第 394 场力扣周赛

使矩阵满足条件的最少操作次数

题目

输入 \(m\times n\) 的矩阵 \(grid\),输出需要的最少操作次数,使得每列的值相等,且相邻两列的值不相等。每次操作可以将任意单元格的值修改为任意非负整数。

数据范围:\(1\leq n,m\leq 1000\),\(0\leq grid[i][j]\leq 9\)。

思路

首先,每列的值肯定是修改为 \([0,9]\) 之间更优,因为操作次数可能更少。我们可以从前往后枚举每列修改为什么值,可以发现存在重叠子问题。定义 \(dp[i][j]\) 表示将第 \(i\) 列修改为 \(j\),使得 \([0,i]\) 列满足条件所需的最少操作次数。有状态转移方程 \(dp[i][j]=\min{(dp[i-1][k])}+cnt_{i,j}\),其中 \(0\leq k\leq 9\) 且 \(k\neq j\),\(cnt_{i,j}\) 表示将第 \(i\) 列修改为 \(j\) 所需的操作次数。时间复杂度为 \(O(mn+nU^{2})\),空间复杂度为 \(O(nU)\),其中 \(U\) 表示 \(grid[i][j]\) 的值域大小。灵神题解提到一个优化方式,状态转移只会从前面所有列操作的最优值或者次优值转移过来,利用这个特性可以降低时间和空间复杂度。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
public int minimumOperations(int[][] grid) {
int m = grid.length, n = grid[0].length;
int[][] cnt = new int[n][10];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
cnt[j][grid[i][j]]++;
}
}

int[][] dp = new int[n + 1][10];
for (int i = 1; i <= n; i++) {
Arrays.fill(dp[i], Integer.MAX_VALUE);
}

for (int i = 0; i < n; i++) {
for (int j = 0; j < 10; j++) {
for (int k = 0; k < 10; k++) {
if (k != j) {
dp[i + 1][j] = Math.min(dp[i + 1][j], dp[i][k] + (m - cnt[i][j]));
}
}
}
}

int ans = Integer.MAX_VALUE;
for (int i = 0; i < 10; i++) {
ans = Math.min(ans, dp[n][i]);
}
return ans;
}
}

最短路径中的边

题目

输入整数 \(n\) 和长度为 \(m\) 的数组 \(edges\),表示包含 \(n\) 个节点和 \(m\) 条边的无向带权图(无重边和自环)。输出长度为 \(m\) 的布尔数组 \(ans\),如果从节点 \(0\) 到节点 \(n-1\) 的所有最短路中包含 \(edges[i]\),则 \(ans[i]=true\)。

数据范围:\(2\leq n\leq 5\times 10^{4}\),\(1\leq m\leq\min{(5\times 10^{4},\frac{n(n-1)}{2})}\),\(1\leq w_{i}\leq 10^{5}\)。

思路

首先使用 Dijkstra 算法求出从节点 \(0\) 到所有其他节点的最短路,然后暴力的想法是以节点 \(0\) 为起点使用 DFS 回溯来遍历图,遍历的同时存储路径上的边,当到达节点 \(n-1\) 的路径长度等于最短路时,则将该路径上的边都置为 \(true\)。回溯理论上最坏情况下的时间复杂度为 \(O(n\times n!)\),但是可以通过力扣的测试,因为可以利用最短路的限制进行剪枝,至于能否构造出 Hack 回溯的测试用例,我不太清楚。

正确的解法是使用两次 Dijkstra 算法,分别求出从节点 \(0\) 到所有其他节点的最短路,和从节点 \(n-1\) 到所有其他节点的最短路。然后枚举每一条边,判断路径长度 \(d_{0,u}+w_{u,v}+d_{v,n-1}\) 或者 \(d_{0,v}+w_{u,v}+d_{u,n-1}\) 是否等于最短路,从而可以得出该边是否在某个最短路中。

另一种做法是只对起点使用一次 Dijkstra 算法,然后从终点反向 DFS,经过的边如果满足 \(d_{0,v}+w_{u,v}=d_{0,u}\),则说明该边在某个最短路上。

作者

Ligh0x74

发布于

2024-05-13

更新于

2024-05-13

许可协议

评论